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Figure 1. Circularly polarized luminescence (upper) and total luminescence 
(lower) spectra of Tb(dpm)3 dissolved in neat (R)-a-phenethylamine. Both 
intensity scales are completely arbitrary. 

evaluation of the sign of induced optical activity with substrate 
absolute configuration. 

No CPL was observed when resolved 2-butanol, 2-octanol, 
or diethyl tartrate were used as the chiral solvent, and no 
Tb(III) emission was observed when using a-(l-naph-
thyl)ethylamine as the solvent (here the solvent totally ab­
sorbed the exciting light at 365 nm and thus made it impossible 
to excite the Tb(III) chelate). 

It was found that the magnitude of total luminescence (TL) 
and CPL depended strongly on the nature of the solvent used, 
and in general the Tb(III) emission was at least an order of 
magnitude more intense in the amine solvents than in the al­
cohol solvents. Previous work involving emission titrations of 
Eu(III) chelates has established that the luminescence intensity 
of the lanthanide ion in a tris(/3-diketone) chelate will increase 
upon adduct formation with a substrate, and that the increase 
in luminescent intensity can be related to the formation con­
stant of the chelate: substrate adduct.7 In the cases where in­
duced CPL was not found in the luminescence of a Tb(dpm)3 
adduct, it was found that the total emission was simply too 
weak to be observed. 

It is possible to place the CPL results on a quantitative basis 
by calculating the luminescence dyssymmetry factor, g\um as 
defined by Richardson and Riehl:3 

_ 2(A/) _ 2( / L - / R ) 
glum- j - ( / L + / R ) U) 

/L and / R refer, respectively, to the intensities of left and right 
circularly polarized emission, A/ is the differential emission 
of left and right circularly polarized light, and / is the mean 
light intensity. This was done at the two extrema found in the 
CPL spectra, and the g\um values are found in Table I. It may 
be noted that the induced CPL is greater in the amine solvents 
than in the alcohol solvents, and this observation is in accord 
with stronger amine adducts being formed. 

Table I. Comparison of the Luminescence Dissymmetry Factors 
Observed in the R Enantiomers of Various Chiral Solvents 

solvent 

a-phenethylamine 
2-aminobutane 
2-aminoheptane 
a-phenethyl alcohol 
propylene glycol 

glum (544 nm) 

-0.0283 
-0.0134 
-0.0111 
-0.0105 
-0.00252 

glum (549 nm) 

+ 0.0325 
+0.0143 
+0.0120 
+ 0.00719 
+0.00112 

A clear and detailed understanding of the CPL results is not 
possible at the present time, but the studies presently underway 
in this laboratory should provide additional insight into the 
nature of this problem. The present method appears to offer 
a simple and fairly convenient method to predict the absolute 
configuration of a substrate capable of forming an adduct with 
Tb(dpm)3, and is particularly suited to the study of amine 
solvents. 
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Orotidine 5'-Monophosphate Decarboxylase Inhibitors 
Formed by Spontaneous Reaction of Barbituric Acid 
and Ribose 5-Phosphate, a Surprising Reaction 

Sir: 

Many drugs used in the treatment of cancer and other pro­
liferative disorders cause an inhibition of RNA and (or) DNA 
synthesis.1 We report here determinations of the structures of 
a series of compounds which result from unusual spontaneous 
reactions between barbituric acid and D-ribose 5-phosphate 
in water. AU of the products of this reaction thus far tested have 
been found to behave as potent competitive inhibitors of pu­
rified yeast orotidine 5'-monophosphate decarboxylase.2~4 The 
decarboxylase catalyzes the final step in the enzymatic se­
quence for the de novo synthesis of uridine 5'-monophosphate 
which is eventually incorporated into nucleic acids via its tri­
phosphate. 

Barbituric acid (54.1 mg, 0.42 mmol) was incubated with 
33.3 mg (0.11 mmol) of D-ribose 5-phosphate disodium salt 
in 3 mL of deionized water for 2 h at 37 0 C, pH 5.5.1^ The 
reaction mixture was then chromatographed on a Sephadex 
G-10 column ( 3 X 1 8 cm) with water, the chromatograph 
being carried out in a 2 0 C cold room to minimize decompo­
sition of the labile product. Monitoring with UV at 260 nm and 
CD at 290 nm gave the base-line separated peak of product 1 
and partly overlapping peaks of barbituric acid and ribose 
phosphate. The product fraction was lyophilized to afford 39 
mg (87%) of practically pure adduct 1; this was used as such 
for structural and inhibition studies since it was found that 
further handling only led to gradual conversion into other 
products (see below). Adduct 1 strongly and competitively 
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Figure I. Change in UV of 1 with pH, 50 mM phosphate buffer. 

inhibited yeast orotidine 5'-monophosphate decarboxylase with 
a Ki of 10-7M.2-6 

The structure of this labile adduct was deduced to be 1 as 
follows. Although the UVmaximum was at 260 nm (e 13 000, 
in pH 7.0 50 mM phosphate buffer), there was only a single 
CD extremum at 290 nm (Ae -0.20, 50 mM phosphate buf­
fer).7 Lack of a 260-nm Cotton effect indicates that the 
chromophore derived from barbituric acid is remote from the 
ribose chiral centers at C-1', -2', and -3'; otherwise product 1 
would have shown a CD extremum at ~260 nm. 

The barbituric acid moiety hence is linked to the phosphate 
group. This was borne out by a positive Tollens reaction and 
the presence of two 13C NMR peaks at 102.7-98.1 ppm8 (in 
D2O, ratio, was ~3:2 for /3 and a anomeric carbons,9 respec­
tively) (see 1). Since the solution of 1 in water became discol-

3lP-nmr 
+ 7.9/+ 8.2 
(H3PO4) 

67.3/675(,3/(I 

102.7/98.1 (/3/a,6/4) 
OH 
H+ 

t UV(H2O, pH7): 260(e 13,000) 
228 (Sh1 e 4,800) 

Cd(H2O, pH7): Ae2 9 0 -0.20 

nmr in D2O, pD 3.5 

ored when left at room temperature for 4 h owing to partial 
decomposition, the 13C NMR was measured at 6 0C; more­
over, the ' 3C NMR was measured in D2O

10 without buffering 
(pD ~3i5) since 1 could not be dissolved in pD 7 buffer in a 
concentration sufficiently high for ' 3C NMR measurements. 
In agreement with the presence of an anomeric mixture, two 
C-5' 13C NMR signals and 31P NMR signals appeared at 
67.3-67.57 and 7.9-8.2 ppm,1' respectively. 

The pKa' of 1 estimated from the small changes seen in UV 
absorptions at 277 nm (Figure 1, isosbestic points at 220, 240, 
and ~257 nm),gives a value of ~6.5. The p#a of TV'-methyl-
barbituric acid is 4.2 (pK2 = 12.8).12 It is thus unlikely that 
1 is substituted at N1. This is substantiated from the following 
data. Only three 13C NMR signals for the barbituric acid 

1209 

moiety containing four carbon atoms were present at 44.1, 
154.2, and 168.5 ppm (see 1), the ratio of the latter two sp2 

carbon peaks being ~1:2. This indicates that this moiety is 
symmetrically substituted, i.e., either at O2 or at C-5. However, 
C-5 is unsubstituted since the 44.1 13C NMR peak (proton 
noise decoupled) was a singlet (hence no C-P bond); the 3.52 
1H NMR peak13 (in D2O, pD ~3.514) was also a broad singlet 
indicating the absence of a CH-O-P linkage. The pyrimidine 
base is therefore linked to the 5'-phosphate through O2; i.e., 
the structure of the adduct is as depicted in structure I.15 

The C-5 and 5-H NMR data shown in 1 indicate that, unlike 
the N'-substituted barbituric acid ribotide 3 in which the 5-H 
1H NMR peak is absent and the 80-ppm C-5 NMR signal is 
weak and broad (NMR in D2O), it exists in the diketo form 
I.16 The UV absorption is thus due to the conjugated system 
shown in the structure. 

Further incubation of adduct 1 at 37 0C for 1 week at pH 
5.5 led to its total disappearance and concomitant formation 
of a complex mixture. Purification of the mixture by two 
passages through Sephadex G-10 column (eluted with water), 
followed by treatments with DEAE-cellulose (exponential 
gradient elution with aqueous ammonium bicarbonate, 0-300 
mM) and Sephadex G-25 (eluted with water), afforded 20 ng 
of another labile adduct, 2 with K^ = 10 -8 M2'6 and an intense 

0 = p - i 

HO OH 

2 uv: 26lnm(e 35,000) 
cd: Ac298 -17 

Ae274 +34 

HO OH 

3 uv: 262nm(e 22,000) 
cd: Ae262 +0.62 

J TO 
<AA> 

HO OH 

4 uv. 
" cd: 

261 nm 
255nm, negative 

UV band (H2O) at 261 nm (e 35 000). The fact that 2 exhib­
ited a typical split CD of the coupled oscillator type17 at ~260 
nm, i.e., Af274 = +-34 and Af258 = -17 (in H2O), indicates 
that two barbituric acid moieties are present. The same bis 
adduct 2 was also formed in 80% yield upon incubation of 
authentic barbituric acid 5'-ribotide 3 in water for 12 h at 37 
0C with a large excess of barbituric acid.18 Presumably 2 is 
derived from intramolecular migration of the barbituric acid 
moiety from the phosphate group to C-T (see arrows in 
structure I)1^o t 0 g i v e ribotide 3, which further reacts with 
a free barbituric acid molecule liberated by decomposition of 
adduct 1. Although the complex mixture (see above) appeared 
to contain a fraction corresponding to ribotide 3, the amount 
was insufficient for proper characterization. 

A third adduct 4, UV (H2O) 261 nm, was isolated in trace 
quantities (~20 Mg) during attempts to further purify the 
partly decomposed adduct 1 by reverse-phase TLC.21 Sub­
stitution on O4 (or O6) to give an enolic system can be dis­
counted because of the lack of an olefinic ' H NMR signal.22 

In contrast to ribotide 3, this adduct has a unique negative CD 
extremum; however, it is inconceivable that the adduct is the 
a anomer of 3 because of unfavorable steric factors. The 02-yl 
structure 4 is therefore tentatively assigned to this adduct. 
Although 4 strongly inhibited the yeast enzyme at a concen­
tration of 1O-5 M, the quantity was too minute for a quanti­
tative estimation of K\. 

Since the various products appear to be in dynamic equi­
libria with each other and with the reactants,2'6 we regard the 
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measured K\ values given above merely as approximations. It 
is noteworthy that at least one of the substances under study, 
3, inhibits mammalian as well as yeast decarboxylase.23 
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Concerning the Role of Cyclopropene in the Allene 
to Propyne Isomerization. A Study of the Thermal 
Rearrangements of C3H3D Isomers' 

Sir: 

One of us2 has recently suggested, on thermochemical ki­
netic grounds, that cyclopropene may be a possible interme­
diate in the thermal reversible isomerization of allene to pro­
pyne (methylacetylene) as shown in Scheme I. It was previ­
ously proposed3 that this rearrangement occurred via a con­
certed process involving a direct 1,3-H shift. It is not possible 
to distinguish between these mechanisms with either unlabeled 
allene or propyne, since the stationary level of cyclopropene 
required by Scheme I is below the level of analytical detect-
ability. However, alternative processes can in principle be 
distinguished by means of a study starting with deuteriopro-
pyne. From propyne-1 -d\ (1), for instance, a concerted process 
would predict allene-^i (3) as the sole initial product. The 
mechanism via cyclopropene (Scheme II) on the other hand 
is likely to produce propyne-3-d\ (2) in addition to allene-^]. 
This is because the intermediate cyclopropene-/-d\ (4) can 
revert to propyne-i/i in two ways which are equivalent by 
symmetry (apart from the deuterium label) to produce 2 as 
well as 1. This latter process is likely to be in effective compe­
tition with formation of 3 since it is known that cyclopropene 
isomerization favors the formation of propyne rather than 
allene.4 

The necessary test materials were prepared as follows. 1 was 
made by reaction of propyne with ethylmagnesium bromide 
in THF solution at —50 0 C, followed by hydrolysis with D2O 

Scheme I 

CHp=C-CHp * CHp 
-CH 

Il 
SCH 

CH3-CiCH 
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